公卫人

 找回密码
 立即注册

QQ登录

只需一步,快速开始

不劳无获:如何获取钢镚? 因为论坛,所以相逢。 捐赠百科答题至尊

公卫考研:一起风雨兼程 因为梦想,所以努力。 真题答案政治英语

职称考试:诸君逢考必过 因为热爱,所以执着。 模拟考场技能执医中级

查看: 8870|回复: 21
打印 上一主题 下一主题

[分享] [福利] 8本Meta分析英文原版电子书(免费PDF下载)

  [复制链接]
跳转到指定楼层
1#
sampson2010 发表于 2014-10-18 13:59:51 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

注册后推荐绑定QQ,之后方才可以使用下方的“用QQ帐号登录”。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
本帖最后由 sampson2010 于 2015-3-3 21:18 编辑 . y7 _- G, F/ i& Y
2 M- L1 A& x, ~# Q; i) X# G. q/ F
Advances in Meta-Analysis
4 }% x, Y: ^4 j( [; q
5 f: p% J/ w' y+ T% K1 P1 SAuthor(s):Terri D. Pigott0 R# t+ I# s! j* k  D! d3 A
Series: Statistics for Social and Behavioral Sciences& e. N9 E+ p: S# u5 I1 v  x9 X
Publisher: Springer
; U3 w9 Z' i! M7 sYear: 2012        " |/ Z- ?1 {: M( \3 n6 m
Edition: 20123 J, }5 K5 ?! z. U7 K
Language: English       
& E6 |. q7 K9 ~! TPages: 170

$ ?+ i1 o" [& h3 I0 p" |7 B; \' }0 v  _
Table of contents : . f# W# l* c5 `. {- J; D7 i2 ~
Cover......Page 1
" _5 s4 c4 q1 HStatistics for Social and Behavioral Sciences......Page 2
8 ~( j! |$ }# ]0 ?; C2 UAdvances in Meta-Analysis......Page 4! r( u0 }  P! f7 `' [: [
ISBN 9781461422778......Page 5% E) u$ y- o% |) p1 I# Q
Acknowledgements......Page 8
# w* s  g! k+ [3 L7 k) JContents......Page 10) C& A/ I: E1 b% z7 V
1.1 Background......Page 16
6 p% r。 f6 l2 x* e3 w7 z/ M) N+ q1.2 Planning a Systematic Review......Page 17% S) l% b, b) h9 j+ X7 }
1.4 Interpreting Results from a Meta-analysis......Page 19& o; X: g6 E; X" u4 L3 z4 k- s9 T
1.5 What Do Readers Need to Know to Use This Book?......Page 20
8 w0 \0 u4 M" y* }: ^3 aReferences......Page 21
. H. w% Q: D. Z7 ]1 {# N1 [* m2.2 Introduction to Notation and Basic Meta-analysis......Page 22* A6 r8 e7 x- o, Z/ e
2.3 The Random Effects Mean and Variance......Page 23  D1 ?' ^% J) P9 H: `* Q
2.4.2 Correlation Coefficient......Page 25
, }  B9 }' y# J, S0 h3 t% {2.4.3 Log Odds Ratio......Page 26
) _4 b% w' F9 R0 Z5 s7 g0 zReferences......Page 27* Y" @! w6 a1 _4 o" u
3.1 Background......Page 28
3 G0 j2 e. {$ u" x$ _3.2 Deciding on Important Moderators of Effect Size......Page 29
0 J) z/ o" b$ Z$ m9 r1 H3.3 Choosing Among Fixed, Random and Mixed Effects Modelsƒ......Page 31
$ p5 }, P% I3 O% U+ d; I3.4 Computing the Variance Component in Random and Mixed Models......Page 337 g# E( F0 f) Q: w8 h+ x6 i8 \; C$ ?
3.4.1 Example......Page 35, Y# }0 e3 n* `
3.5 Confounding of Moderators in Effect Size Models......Page 36* ?' J4 `5 X# ~2 Y' w
3.5.1 Example......Page 38/ l' e* c8 |" O$ ^0 h1 \# H: _: \
3.6.1 Example......Page 40
! r+ i2 E3 V, \3.7 Interpretation of Moderator Analyses......Page 43
) B3 s3 }) D" }1 _$ Y  S9 ~Computing the Variance Component Using SAS......Page 44% F4 C7 p+ K) s* U  U
Computing the Variance Component Using R......Page 45
/ U" u) c% ?  g9 @4 T7 pComputing the Fixed Effects Meta-regression Using SAS......Page 46! w& r! n( U) G: S0 ~# A
References......Page 47
8 O( V2 Y& Z! Y2 t% C4.1 Background......Page 505 z9 d; j7 ^$ f  v( p0 e3 p
4.2 Fundamentals of Power Analysis......Page 523 P; E( B9 U$ d2 i
4.3.1 Z-Test for the Mean Effect Size in the Fixed Effects Modelƒ......Page 545 V- \# x% }+ Q6 p
4.3.2 The Power of the Test of the Mean Effect Size in Fixed Effects Models......Page 56: K* B0 I1 w% R/ B9 O
4.3.3 Deciding on Values for Parameters to Compute Power......Page 57
/ ^# ]。 V" I" Z0 T5 p6 c* U4.3.4 Example: Computing the Power of the Test of the Mean......Page 58+ I& D- l; G' E9 o# ^& v
4.3.5 Example: Computing the Number of Studies Needed to Detect an Important Fixed Effects Mean......Page 604 ]% ^) T  j3 n0 Y. m
4.3.6 Example: Computing the Detectable Fixed Effects Mean in a Meta-analysis......Page 612 K/ r; ]6 v% g6 w/ ^$ P# D- v5 J
4.4 Test of the Mean Effect Size in the Random Effects Model......Page 62/ X) e0 [7 D8 K5 r$ n9 E! e8 u9 C3 l
4.4.1 The Power of the Test of the Mean Effect Size in Random Effects Models......Page 63. j, T- C" W  M3 I* B
4.4.2 Positing a Value for tau2 for Power Computations in the Random Effects Model......Page 642 }* ~: @. v- Y# ~
4.4.3 Example: Estimating the Power of the Random Effects Mean......Page 65
6 `0 I2 ^* V4 S9 d4 J4 }4.4.4 Example: Computing the Number of Studies Needed to Detect an Important Random Effect Mean......Page 66
0 ^。 l& Y3 f$ j+ X2 a。 KExcel......Page 67
, e7 Z/ C: |5 _4 t: [" FReferences......Page 68; D. H) {7 E8 f5 d. E
5.1 Background......Page 70
) ^1 j( a5 E0 g5.2.1 The Power of the Test of Homogeneity in a Fixed Effects Model......Page 71
- I; u# i" A: }。 Z2 [  K1 ^5.2.2 Choosing Values for the Parameters Needed to Compute Power of the Homogeneity Test in Fixed Effects Models......Page 72
! V& z: Y1 j% t3 Q/ z+ d! h$ r5.2.3 Example: Estimating the Power of the Test of Homogeneity in Fixed Effects Models......Page 73
9 D. M% v9 U# [: d. I5.3 The Test of the Significance of the Variance Component in Random Effects Models......Page 74
  v* ^7 D+ Y" H" c- p5.3.1 Power of the Test of the Significance of the Variance Component in Random Effects Models......Page 75
# o" L) t1 I2 e+ x2 Z5.3.2 Choosing Values for the Parameters Needed to Compute the Variance Component in Random Effects Models......Page 761 M' w* O3 Q$ a% y& I  I
5.3.3 Example: Computing Power for Values of tau2, the Variance Component......Page 778 B" o: X0 P7 {9 v+ t8 ^
SAS......Page 79' I& o$ b1 J; j# S: R
R......Page 80) l1 M+ f$ Z3 b: K# y, w
References......Page 81& `2 r  p+ i' I2 u- \
6.1 Background......Page 82' r$ j) m7 s) f+ s
6.2.2 Power of the Test of Between-Group Homogeneity, QB, in Fixed Effects Models......Page 83; W, g7 L( b- O' d8 N, k
6.2.4 Example: Power of the Test of Between-Group Homogeneity in Fixed Effects Models......Page 85
+ y! h2 ], `) s。 h, Q& r: ?' n6.2.5 Power of the Test of Within-Group Homogeneity, QW, in Fixed Effects Models......Page 86' t% A- z/ m, u: V) N9 y
6.2.6 Choosing Parameters for the Test of QW in Fixed Effects Models......Page 87
  T6 Z5 Q* z; q' @" X6.2.7 Example: Power of the Test of Within-Group Homogeneity in Fixed Effects Models......Page 88
/ h  }; m# P4 Q+ R) L6.3.1 Power of Test of Between-Group Homogeneity in the Random Effects Model......Page 89$ k" L: Q' t: c4 h
6.3.3 Example: Power of the Test of Between-Group Homogeneity in Random Effects Models......Page 91
8 ]4 U- y( P: h' c3 ]References......Page 93  \* a, l0 {: p, y+ K3 U3 _
7.1 Background......Page 94
: |2 K+ R) `# f2 k; m* @7 m- ]7.2.1 Identification of Publication Bias......Page 95
0 ]9 E% V! \9 X! t) w) g7.2.1.1 Example of Funnel Plot......Page 96, g3 N$ ^6 _/ W
7.2.2 Assessing the Sensitivity of Results to Publication Bias......Page 97
7 i0 r" n& p% K" f+ l7.3 Missing Effect Sizes in a Meta-analysis......Page 1002 s5 [; k5 P% S1 V- ]
7.4 Missing Moderators in Effect Size Models......Page 101
# c5 Z) [+ T# o6 E' A; C% q5 A0 }7.5 Theoretical Basis for Missing Data Methods......Page 1022 J9 h! M/ F& v9 H
7.5.1 Multivariate Normality in Meta-analysis......Page 103
7 u+ s' O4 e3 P; z5 e( q% x1 e7.5.2 Missing Data Mechanisms or Reasons for Missing Data......Page 104
; }% T: O* \: k0 o7.6.1 Complete-Case Analysis......Page 105; T. I+ s- C1 ]3 \! x
7.6.1.1 Example: Complete-Case Analysis......Page 1063 f+ N+ d* R" o3 A' X( m
7.6.2 Available Case Analysis or Pairwise Deletion......Page 107& F- W- o' |1 \7 A5 i* u, O* a
7.6.3 Single Value Imputation with the Complete Case Mean......Page 108
  x0 g. J! \7 ]" D  o% h$ W7.6.3.1 Example: Mean Imputation......Page 109, O: e$ E; C3 a$ ]- f% _+ y$ z
7.6.4 Single Value Imputation Using Regression Techniques......Page 110
。 B8 h- a  z" e7.6.4.1 Example: Regression Imputation......Page 1114 G  b  n' C% j3 E. g& l7 V
7.7.1 Maximum-Likelihood Methods for Missing Data Using the EM Algorithm......Page 112
/ d* m3 w* V2 o7.7.1.1 Example Using the EM Algorithm......Page 113$ k$ W+ S! N% q7 I& j1 P6 V1 p/ j8 {
7.7.2.1 Generating Multiple Imputations......Page 114# ?( i' d4 q' M6 L- L
7.7.2.3 Combining the Estimates......Page 115
. B( W; M3 E# \6 b) U- uR Programs......Page 117
% _+ L7 q3 d, ~。 CSAS Proc MI......Page 119% q% c* l( U9 h9 `
References......Page 121
$ `# w" n* v/ C! i5 d8.1 Background......Page 124
* Z/ G$ ~" c/ p' Y0 |' c8.2 The Potential for IPD Meta-analysis......Page 125
$ e4 s$ F, l! E9 e; ^, R8.3.1 Simple Random Effects Models with Aggregated Data......Page 127
, ~( e3 @0 \$ X: ^$ {8.3.2.1 Example: Two-Stage Method Using Correlation as the Effect Size......Page 129
) k  }0 h+ G: f0 \8.4.1 IPD Model for the Standardized Mean Difference......Page 130/ A7 ]) E% G$ @
8.4.3 Model for the One-Stage Method with Both IPD and AD......Page 1318 t( b3 m! c/ l
8.5 Effect Size Models with Moderators Using a Mix of IPD and AD......Page 133" |' [" u2 o- U; \
8.5.1 Two-Stage Methods for Meta-regression with a Mix of IPD and AD......Page 134& j& o, a9 z* n4 S& x* C6 y0 O
8.5.2 One-Stage Method for Meta-regression with a Mix of IPD and AD......Page 135
: V. m9 F7 E$ J) t7 d+ L. _/ w4 q# `8.5.4 One-Stage Meta-regression with a Mix of IPD and AD......Page 136
$ K3 J0 r, J( L2 E4 [# ]8.5.4.1 Example: One-Stage Method for Meta-regression with Correlationsƒ......Page 137
1 T. A# v% g4 b1 ESAS Code for Simple Random Effects Model Using the Two-Step Method......Page 138
& }0 Z7 _6 Q" r  ?+ {; eOutput from Two-Stage Simple Random Effects Model......Page 139
; R& ?, |# \8 F( `) @  TSAS Code for Meta-regression Using the Two-Stage Method......Page 1401 _  J" e" P  x4 a4 F  ]0 V
SAS Code for Simple Random Effects Model Using the One-Stage Model......Page 141
2 U( I2 w! A- t8 A6 ]% I4 U8 L* POutput from One-Stage Simple Random Effects Model......Page 143
, F; @$ f9 Z# A* U8 XOutput for Meta-regression Using the One-Step Method......Page 144
! X% O0 b$ K7 QReferences......Page 145
0 M+ x3 \  `* \+ m9.1 Background......Page 148* n1 G/ C; [2 n% l
9.1.1 The Preventive Health Services (2009) Report on Breast Cancer Screening......Page 1496 y, l6 R; a! p# s$ ^
9.2.1 Surface Similarity......Page 150- j: j9 Y1 a( ~- w3 V- G: P2 Z% `
9.2.2 Ruling Out Irrelevancies......Page 151
' [+ k6 {! r/ m0 L* B# G) `# S9.2.3 Making Discriminations......Page 152
* U) m0 L% v- T5 C1 M) \% T9.2.5 Causal Explanation......Page 1538 i9 G9 e1 l1 _- G5 _
9.3 Suggestions for Generalizing from a Meta-analysis......Page 154
8 ~2 B5 U8 `. K4 ?7 R- ^  [) {4 \References......Page 155
* H! n' P- e! ~2 e。 R10.2 Understanding the Research Problem......Page 1583 p7 d. T7 e7 Z0 G, H! r$ d
10.3 Having an a Priori Plan for the Meta-analysis......Page 159
1 i$ Y3 j9 y: P" ~7 ^$ B10.4 Carefully and Thoroughly Interpret the Results of Meta-analysis......Page 160  ?! d  ^! K- G' {6 C7 a
References......Page 161
% ~0 V3 n$ z* z. `/ @( @# |0 d; T( H11.1 Sirin (2005) Meta-analysis on the Association Between Measures of Socioeconomic Status and Academic Achievement......Page 162
( b7 k& S) x; i' u) k& ?! ^11.2 Hackshaw et al. (1997) Meta-analysis on Exposure to Passive Smoking and Lung Cancer......Page 164
/ K1 i$ n! R* n  W. R11.3 Eagly et al. (2003) Meta-analysis on Gender Differences in Transformational Leadership......Page 166
& U; L, A- J6 N1 M; \References......Page 167; J1 P! W: r! ^1 o/ Q6 O
Index......Page 168
2 q1 d9 l$ c+ r; _% O, A* R/ V
6 l. M2 r9 C6 |% ]- Q! C5 f8 ^ Advances in Meta-Analysis (2012).pdf (1.03 MB, 下载次数: 614)
9 z: _  L, _+ _$ R% ?' g9 m$ f3 O) A) U, h: d

' Y6 \1 l( _1 o/ n4 C% U( L0 E/ y0 |Applied Meta-Analysis for Social Science Research
8 [# |! X/ l( G0 |8 [ 5 G$ T2 O' z# |5 b4 n
Author(s): Noel A. Card PhD8 w& C& U' |3 b. o$ a$ R
Series: Methodology In The Social Sciences! ~1 m4 \7 `3 h( J" r( b/ M: Q" @! [
Publisher: The Guilford Press0 A! M. d4 [" u/ h) W
Year: 2011       
2 ?# ?0 j1 i5 l9 q  ?Edition: 10 P' K8 }0 s+ z. N! l( f  r3 m
Language: English       
3 z( {- s! f  U8 |9 D  V" DPages: 402
( J4 X, j) o9 m' q
5 Z! l' P- v  T2 R2 r6 E6 q& c
Contents:. x! z$ x6 g2 H' [6 ]3 F! x
Part 1. The Blueprint: Planning and Preparing a Meta-Analytic Review. 1. An Introduction to Meta-Analysis. 1.1 The Need for Research Synthesis in the Social Sciences. 1.2 Basic Terminology. 1.3 A Brief History of Meta-Analysis. 1.4 The Scientific Process of Research Synthesis. 1.5 An Overview of the Book. 1.6 Practical Matters: A Note on Software and Information Management. 1.7 Summary. 1.8 Recommended Readings. 2. Questions that Can and Questions that Cannot be Answered Through Meta-Analysis. 2.1 Identifying Goals and Research Questions for Meta-Analysis. 2.2 The Limits of Primary Research and the Limits of Meta-Analytic Synthesis. 2.3 Critiques of Meta-Analysis: When Are They Valid and When Are They Not? 2.4 Practical Matters: The Reciprocal Relation between Planning and Conducting a Meta-Analysis. 2.5 Summary. 2.6 Recommended Readings. 3. Searching the Literature. 3.1 Developing and Articulating a Sampling Frame. 3.2 Inclusion and Exclusion Criteria. 3.3 Finding Relevant Literature. 3.4 Reality Checking: Is My Search Adequate? 3.5 Practical Matters: Beginning a Meta-Analytic Database. 3.6 Summary. 3.7 Recommended Readings. Part 2. The Building Blocks: Coding Individual Studies. 4. Coding Study Characteristics. 4.1 Identifying Interesting Moderators. 4.2 Coding Study "Quality". 4.3 Evaluating Coding Decisions. 4.4 Practical Matters: Creating an Organized Protocol for Coding. 4.5 Summary. 4.6 Recommended Readings. 5. Basic Effect Size Computation. 5.1 The Common Metrics: Correlation, Standardized Mean Difference, and Odds Ratio. 5.2 Computing r from Commonly Reported Results. 5.3 Computing g from Commonly Reported Results. 5.4 Computing o from Commonly Reported Results. 5.5 Comparisons among r, g, and o. 5.6 Practical Matters: Using Effect Size Calculators and Meta-Analysis Programs. 5.7 Summary. 5.8 Recommended Readings. 6. Corrections to Effect Sizes. 6.1 The Controversy of Correction. 6.2 Artifact Corrections to Consider. 6.3 Practical Matters: When (and How) to Correct: Conceptual, Methodological, and Disciplinary Considerations. 6.4 Summary. 6.5 Recommended Readings. 7. Advanced and Unique Effect Size Computation. 7.1 Describing Single Variables. 7.2 When the Metric is Meaningful: Raw Difference Scores. 7.3 Regression Coefficients and Similar Multivariate Effect Sizes. 7.4 Miscellaneous Effect Sizes. 7.5 Practical Matters: The Opportunities and Challenges of Meta-Analyzing Unique Effect Sizes. 7.6 Summary. 7.7 Recommended Readings. Part 3. Putting the Pieces Together: Combining and Comparing Effect Sizes. 8. Basic Computations: Computing Mean Effect Size and Heterogeneity Around this Mean. 8.1 The Logic of Weighting. 8.2 Measures of Central Tendency in Effect Sizes. 8.3 Inferential Testing and Confidence Intervals of Average Effect Sizes. 8.4 Evaluating Heterogeneity Among Effect Sizes. 8.5 Practical Matters: Nonindependence Among Effect Sizes. 8.6 Summary. 8.7 Recommended Readings. 9. Explaining Heterogeneity Among Effect Sizes: Moderator Analysis. 9.1 Categorical Moderators. 9.2 Continuous Moderators. 9.3 A General Multiple Regression Framework for Moderation. 9.4 An Alternative SEM Approach. 9.5 Practical Matters: The Limits of Interpreting Moderators in Meta-Analysis. 9.6 Summary. 9.7 Recommended Readings. 10. Fixed-, Ramdom-, and Mixed-Effects Models. 10.1 Differences Among Models. 10.2 Analyses of Random-Effects Models. 10.3 Mixed-Effects Models. 10.4 A Structural Equation Modeling Approach to Random- and Mixed-Effects Models. 10.5 Practical Matters: Which Model Should I Use? 10.6 Summary. 10.7 Recommended Readings. 11. Publication Bias. 11.1 The Problem of Publication Bias. 11.2 Managing Publication Bias. 11.3 Practical Matters: What Impact Do Sampling Biases Have on Meta-Analytic Conclusions? 11.4 Summary. 11.5 Recommended Readings. 12. Multivariate Meta-Analytic Models. 12.1 Meta-Analysis to Obtain Sufficient Statistics. 12.2 Two Approaches to Multivariate Meta-Analysis. 12.3 Practical Matters: The Interplay between Meta-Analytic Models and Theory. 12.4 Summary. 12.5 Recommended Readings. IV. The Final Product: Reporting Meta-Analytic Results. 13. Writing Meta-Analytic Results. 13.1 Dimensions of Literature Reviews, Revisited. 13.2 What to Report and Where to Report it. 13.3 Using Figures and Tables in Reporting Meta-Analyses. 13.4 Practical Matters: Avoiding Common Problems in Reporting Results of Meta-Analyses. 13.5 Summary. 13.6 Recommended Readings.
) B5 W' z# U+ G# J5 r4 b) a, S. X# Z' [4 u8 V/ k
Applied Meta-Analysis for Social Science Research (2011).rar (5.31 MB, 下载次数: 368)
, z8 K: m' ^( u2 ~  e1 _8 R- g! m( U4 q" |+ ~% `
Meta analysis : a guide to calibrating and combining statistical evidence3 y- J, r1 D. P6 n

( L! U* X  r0 [4 j3 A+ f) I- rAuthor(s): Elena Kulinskaya, Stephan Morgenthaler, Robert G. Staudte9 r  y# [3 `; k8 M! K
Series: Wiley Series in Probability and Statistics2 D, {! `" j5 t
Publisher: Wiley
. L! Y  g* D5 P+ t& cYear: 2008
. A& o+ |) N/ K5 x. x4 ]3 WLanguage: English       
- I。 `; ~& t; b$ t( d, `' _Pages: 2726 B9 Z5 V. C/ k$ X: n! `
; t7 p+ i6 A6 X" [" k
Contents:

% F, ^7 _# O5 `7 {& g0 S2 d2 L: aPreface.; M) v; E+ m" ^$ B. |
Part I The Methods.6 y* ?* c# N: O1 g5 i& C
1 What can the reader expect from this book?
) z+ V0 z( q8 Z( [# X1.1 A calibration scale for evidence.% |1 A. ]8 i4 J: G, {
1.2 The efficacy of glass ionomer versus resin sealants for prevention of caries.+ B4 B: B: @6 K" V' }  {. l
1.3 Measures of effect size for two populations.& b& H4 h4 w- a* Y+ {" m* V, ?
1.4 Summary.
/ ~4 x% d% j: Y4 ?2 Independent measurements with known precision.1 R) F* ?/ B4 C6 o6 T7 o
2.1 Evidence for one-sided alternatives.
* O& D* q- \+ M2 \2.2 Evidence for two-sided alternatives.
; [( N2 }8 u  z. m1 K) B2.3 Examples.
" ?, Z2 q7 {* o6 x3 Independent measurements with unknown precision.
/ C# H% y- I5 T# ]; p3.1 Effects and standardized effects.% }0 B$ W2 K7 `8 N+ i
3.2 Paired comparisons.# A! C  S- c2 T/ L( \
3.3 Examples.+ G" c. n! H7 v
4 Comparing treatment to control.2 R- M. {5 v! I6 S' l& L, b
4.1 Equal unknown precision.
4 \9 \1 Y9 {, T# V! Z& t4.2 Differing unknown precision.8 h1 k* a# i8 n% ?
4.3 Examples.0 L6 n' |4 F' X' F
5 Comparing K treatments.
+ {7 r6 V) a; P7 |' m2 f: S5.1 Methodology.4 g8 P/ d$ i( Z1 X
5.2 Examples./ S6 n; Z* l( |2 }
6 Evaluating risks.
2 t6 [9 |# d5 [3 ?6.1 Methodology.
# n2 z0 t& d1 F6 [4 v6.2 Examples.
# G7 g" D9 Q- `5 u7 Comparing risks.
4 u9 Q- {! l% a' ~" v1 `3 b7.1 Methodology.
/ U  m+ Z1 C  m; }. f/ r7.2 Examples.
' o2 z9 P! N/ G+ u7 D- o3 f8 Evaluating Poisson rates.
3 e5 C- s" E/ E# Y  h8.1 Methodology.  j) H+ z6 L0 }0 H
8.2 Example.) j- b5 n, N5 ~* j
9 Comparing Poisson rates.# C/ z- {% c0 T3 J- d' s( G. N) A
9.1 Methodology.' z1 }/ H& v: I3 L0 \: e
9.2 Example.
+ ?5 V* ^2 a6 b; c$ u  E  n) K" Y10 Goodness-of-fit testing.0 C/ x  Y3 h& \  s2 M
10.1 Methodology., D" S$ G& e% _& ]
10.2 Example.
7 Y0 G$ A1 X9 P4 t11 Evidence for heterogeneity of effects and transformed effects.
4 ~6 P: t, J, W) {6 ]11.1 Methodology.
, T5 Q8 B" a' E0 `$ F11.2 Examples.
4 p% A: F( n6 V) |! A8 B' N12 Combining evidence: fixed standardized effects model.% Z- x, V# z) f  l7 a
12.1 Methodology.+ T$ L" f/ ]& j+ e" N5 b
12.2 Examples.  {7 Z: A! T* o
13 Combining evidence: random standardized effects mode.# G  l& g) {4 w: y" r' K
13.1 Methodology.
+ R, x0 d; X' X( I9 l2 o1 J13.2 Example..
( N& i# H  g3 L2 O  H9 n9 k14 Meta-regression.
1 g% a# S/ P* t' J1 {14.1 Methodology.
& G' T: w1 s& W2 I3 A; ?) E# f- E* z14.2 Commonly encountered situations.- T, I* T9 x* ?4 k3 f: @3 {. `
14.3 Examples.
+ }5 Q2 {9 Y; J6 w; M: v$ e15 Accounting for publication bias.
# Z. e9 j! w$ J, o, `- f$ T- a15.1 The downside of publishing.
' o2 V& g* g/ a3 e9 q; v15.2 Examples.
2 u$ a/ T2 |3 U% Q8 IPart II The Theory.
4 f0 U+ \6 ?1 Y% q16 Calibrating evidence in a test.( R8 B! k# U( U4 x( {4 z# i( B5 h* i
16.1 Evidence for one-sided alternatives.2 w$ W# ~0 ~$ {2 V0 L
16.2 Random p-value behavior.( A" z" A$ `: e1 w; c
16.3 Publication bias.- ~# ]' S, L  @% s
16.4 Comparison with a Bayesian calibration.
- A: |5 r/ q, Q1 J" {6 f16.5 Summary.. e! C$ x' m& i: {+ Z. B  L5 a
17 The basics of variance stabilizing transformations.0 a$ F5 S7 o" _/ T- y
17.1 Standardizing the sample mean.
& S% u7 u, K0 G/ P" V8 D7 i17.2 Variance stabilizing transformations.
3 }: f9 \4 x% n5 t17.3 Poisson model example.
  l  D3 u9 c7 w  F) {) Z% U17.4 Two-sided evidence from one-sided evidence.
, K' p; S0 v& C17.5 Summary./ ]6 L( D# q2 |/ S4 J2 |
18 One-sample binomial tests.  {4 q7 @% l8 y) @
18.1 Variance stabilizing the risk estimator.
6 C: ^  X' l" s2 I! L0 }% j5 [18.2 Confidence intervals for p.8 g/ T' B* M8 n6 q
18.3 Relative risk and odds ratio.
! \: U5 t* s0 F1 Y18.4 Confidence intervals for small risks p.6 L6 t' x) }, i; U& L1 C  h
18.5 Summary.
0 ^9 W7 c  z: u6 [7 g) w19 Two-sample binomial tests.
% i1 D: N; o: L! {19.1 Evidence for a positive effect.
& Y! T# C; g: ?7 a- U0 d19.2 Confidence intervals for effect sizes.& e4 Z/ o& o0 e; e
19.3 Estimating the risk difference.
+ s8 c8 e$ i  z0 g# i  V2 ?: ?! ]2 e19.4 Relative risk and odds ratio.# I% F+ p/ K; X' m( y4 U
19.5 Recurrent urinary tract infections.
。 E) k: V% t$ u$ K8 d6 u" t  U- ~19.6 Summary.  I8 o8 [+ i) a/ @1 c
20 Defining evidence in t-statistics.% N% H- C& b4 M# h
20.1 Example.
/ S# g" C7 N1 Z+ w& U20.2 Evidence in the Student t-statistic.
4 O% Y0 b8 _4 O* k; u, Y20.3 The Key Inferential Function for Student’s model.$ A- z% g8 Y0 a8 y
20.4 Corrected evidence.0 r( @- P0 _/ L4 T+ V- F
20.5 A confidence interval for the standardized effect.
* f+ a+ ~4 k% b' M$ z& l20.6 Comparing evidence in t- and z-tests.  L" O- ^) H) t( N
20.7 Summary.6 D2 \" {/ z. J8 R$ K/ Y% a& K
21 Two-sample comparisons.; q9 [. }, p% F5 o+ ?! u
21.1 Drop in systolic blood pressure.
4 `% U2 l3 [& ~21.2 Defining the standardized effect.
+ R: E; v+ p" K21.3 Evidence in the Welch statistic.+ z' o$ p5 `; A: y3 M
21.4 Confidence intervals for d.: d, W/ V, g6 m3 P! ~
21.5 Summary.$ A7 N6 m, ^* K1 J) F! o5 T0 D
22 Evidence in the chi-squared statistic.) H, X: A  D2 ~4 N
22.1 The noncentral chi-squared distribution.3 C! @6 P/ M" y* J. O. p0 m  }
22.2 A vst for the noncentral chi-squared statistic.! \( i) p& l8 \$ M8 z& r8 M" B
22.3 Simulation studies.
5 l/ Q3 H4 }8 @# [5 ^9 W22.4 Choosing the sample size.
。 S) R4 s6 `* |) J5 P+ N' D22.5 Evidence for l > l0.
  T$ r& V) L! G4 ^8 t  K7 C; w22.6 Summary.
/ S/ H" F" ~6 A1 f5 |8 q23 Evidence in F-tests.9 v# j( P! _* b' ]
23.1 Variance stabilizing transformations for the noncentral F., A& ^5 Z8 A/ N, R+ e
23.2 The evidence distribution.6 F7 x; i9 I1 S- f
23.3 The Key Inferential Function.
- @' C: q; F/ Z, n23.4 The random effects model.- o8 g" s: h4 r) O5 Q0 o
23.5 Summary.
. R. P) H# {4 u0 @% a% X1 n# E7 f4 a24 Evidence in Cochran’s Q for heterogeneity of effects.
- ]& d+ r" d/ K7 X9 p7 q24.1 Cochran’s Q: the fixed effects model.) m. _/ q# g: k. ~
24.2 Simulation studies.% ^  C9 O1 t' f4 N
24.3 Cochran’s Q: the random effects model.
! A  o9 f7 m! X" g; g8 ?24.4 Summary.
; h  S8 C' \; d% H# U25 Combining evidence from K studies.
- ]* E5 \0 r: o0 q/ H9 X25.1 Background and preliminary steps.
& W1 f# Q8 [8 l; @' l+ ^25.2 Fixed standardized effects.
1 \) q9 Q/ O& C: ~25.3 Random transformed effects.
$ A; a4 `- z* o" Y3 s% Z25.4 Example: drop in systolic blood pressure.
: ]  L: t。 {/ k25.5 Summary.# G" \! n2 J& Q1 U: P4 Z
26 Correcting for publication bias.2 p: ]# S% p; K* ~" H
26.1 Publication bias.+ R% ^% A& n! J
26.2 The truncated normal distribution.: B2 w" ?" t$ A
26.3 Bias correction based on censoring.
5 K' A& d# `* V! p, Y6 z26.4 Summary." Z. o9 V+ k7 _( l% x
27 Large-sample properties of variance stabilizing transformations.7 @1 p9 [. e7 Q+ t
27.1 Existence of the variance stabilizing transformation.
! t- S) O8 f; @7 @27.2 Tests and effect sizes.
) S1 ~3 I4 M# a; _" [1 W, v" o27.3 Power and efficiency.+ k/ u* }" g8 }/ C& b
27.4 Summary.
: U- b7 ?& U$ k) l$ ]1 w, ^。 @3 g& pReferences.
5 w4 Y0 l' S: \# a; U/ @* A/ C6 q2 ]Index.
$ O5 C+ n) }+ x2 |! p& T
! J$ _$ ~) {. m Meta analysis a guide to calibrating and combining statistical evidence (2008).pdf (2.33 MB, 下载次数: 358)
。 T/ k3 n" {' s: H" f- D# l, G9 a5 [
Meta-analysis and combining information in genetics and genomics
5 I8 B。 t9 R+ r% B
: i( ]& u4 c8 j7 U; r+ VAuthor(s): Rudy Guerra, Darlene Renee Goldstein( Y" s* L7 ^8 f; D, Z4 V, `+ @
Series: Chapman and Hall/CRC mathematical & computational biology series
( f0 R2 k# l. u  Z; KPublisher:        CRC Press        City:        Boca Raton
$ G: u- O2 v  s! k/ f4 G6 NYear: 2010       
' n# E' R  I- pLanguage: English       
' X9 m2 f, e7 j- g5 \Pages: 335% s2 Z+ q8 J! C( n+ o5 Q

6 J。 ^。 X6 K$ ]4 x1 H7 `$ V; \$ nTable of contents :

4 N9 f0 V. d6 K2 SPublished Titles......Page 49 M  l. h& ?( }" h
Dedication......Page 8
; r+ W2 m$ Y2 fContents......Page 10) F6 H/ G5 w9 X8 j7 W6 c4 G! y# E
Contributors......Page 16
2 Q/ @% s, N0 T. {2 g! g$ o7 i  fPreface......Page 22( c* X# ^; Y# J  d; g0 U" @
Part 0. Introductory Material......Page 266 g& [2 ^+ g+ A- m- z* l
CHAPTER 1: A brief introduction to meta-analysis,genetics and genomics......Page 28- M5 D* ^# `+ a7 Q8 D( o
Part I. Similar Data Types I: Genotype Data......Page 46# R- b7 Y: v1 E* M- x1 c
CHAPTER 2: Combining information across genome-wide linkage scans......Page 48' c) o" q. T- X2 ]1 G, t$ u
CHAPTER 3: Genome search meta-analysis (GSMA):a nonparametric method formeta-analysis of genome-wide linkage studies......Page 58! I. k' N/ f! L$ l6 i9 j
CHAPTER 4: Heterogeneity in meta-analysis of quantitative trait linkage studies......Page 74* X; ^$ D" |1 h' _# P# u
CHAPTER 5: An empirical Bayesian framework for QTL genome-wide scans......Page 92
' _4 G# u3 s! B' S7 t9 UPart II. Similar Data Types II: Gene Expression Data......Page 106# d& F* {2 ]" w+ q( q& e
CHAPTER 6: Composite hypothesis testing: anapproach built on intersection-uniontests and Bayesian posterior probabilities......Page 1087 h. G5 R3 x% ]) C. ?) y0 A5 g
CHAPTER 7: Frequentist and Bayesian error pooling methods for enhancing statistical powerin small sample microarray data analysis......Page 120
0 f9 u8 g# A7 Q5 \  `+ U' X2 ZCHAPTER 8: Significance testing for small microarray experiments......Page 138
  L# d+ J; K. M6 xCHAPTER 9: Comparison of meta-analysis tocombined analysis of a replicated microarray study......Page 160& u% t1 W' T1 _$ |8 F9 o' Y
CHAPTER 10: Alternative probe set definitions for combining microarray data across studies using different versions of Affymetrix oligonucleotide arrays......Page 182/ w6 U; t9 c- D! p1 a- J" g" a; c
CHAPTER 11: Gene ontology-based meta-analysis ofgenome-scale experiments......Page 200
( _7 s9 j, C  ?5 kPart III. Combining Different DataTypes......Page 224) J# z" f1 l7 M& D
CHAPTER 12: Combining genomic data in human studies......Page 2261 M* I# a+ b; b/ r
CHAPTER 13: An overview of statistical approachesfor expression trait loci mapping......Page 2381 ^+ B) S, b8 Z
CHAPTER 14: Incorporating GO annotation information in expression trait loci mapping......Page 250
' G- L* M7 ~# {# U1 t* ^  OCHAPTER 15: A misclassification model for inferring transcriptional regulatory networks......Page 2686 L% ~4 L. K2 m% M" L$ _
CHAPTER 16: Data integration for the study of protein interactions......Page 284  Q3 p0 ^) Z0 y# U" {' d3 x5 C- C+ V
CHAPTER 17: Gene trees, species trees, and species networks......Page 3005 p) Z+ j$ Z5 {
References......Page 320( H5 c& h% D; {/ p( f! ]
Back cover......Page 354
! v" Q- c: L% |; W' a8 D9 K- v+ e( n; Z) e
Meta-analysis and combining information in genetics and genomics (2010).pdf (6.29 MB, 下载次数: 312) 7 W" s) U" l; k  F+ N

2 ^- G6 A# g$ k1 u7 Q; hMeta-Analysis in Medicine and Health Policy
# N% \  H0 ?! i
6 m  q( Y- r' T6 G$ f2 C8 Y) uAuthor(s): Donald A. Berry, Dalene K. Stangl5 \6 a" U3 B( H; g2 T
Publisher: CRC Press
, e0 K: f。 j! u" B) ZYear: 2000       
$ i2 [+ v, Q/ _1 n( Y, iEdition: 1% g8 z1 G! S; h2 _. q
Language: English          _) a; h; l) ^# B5 j, X) m
Pages: 418( N7 f& d3 P7 A$ s- z

7 Z% T& F: z% q  Z2 A- V" U/ FTable of contents :

3 U: v% Z  m1 o$ s$ [! `4 Z& ?0 BSeries Introduction......Page 62 ?5 c$ j' n0 }( V; y" f
Preface......Page 8" m- \: u0 m3 v& J
Contents......Page 109 h1 P2 j  t2 o1 ]3 n
Contributors......Page 14
; n& s$ i/ ]3 O' pMeta-analysis: Past and Present Challenges......Page 18
7 s/ y6 K+ i* U( m& c8 qMeta-analysis of Heterogeneously Reported Study Results: A Bayesian Approach......Page 46
/ Y" T# W2 h* A9 j4 a+ r# [; M) tMeta-analysis versus Large Trials: Resolving the Controversy......Page 82
3 q1 w. N  S$ XA Bayesian Meta-analysis of Randomized Mega-trials for the Choice of Thrombolytic Agents in Acute Myocardial Infarction......Page 100
& ]) b) M2 h6 s9 y) B9 BCombining Studies with Continuous and Dichotomous Responses: A Latent-Variables Approach......Page 1223 E2 |) H/ Y8 {& J/ r8 i- I
Computer-modeling and Graphical Strategies for Meta-analysis......Page 144* }% E4 G: m) m  P
Meta-analysis for 2 x 2 Tables with Multiple Treatment Groups......Page 196
' P0 L+ _9 K- u3 z7 xA Bayesian Meta-analysis of the Relationship between Duration of Estrogen Exposure and Occurrence of Endometrial Cancer......Page 208
8 O1 Z) D' x/ L- WModeling and Implementation Issues in Bayesian Meta-analysis......Page 222/ j0 H' t0 L! y) I8 v
Meta-analysis of Population Pharmacokinetic Data......Page 2481 M0 d' e4 m5 n% [) C
Meta-analysis of Individual-patient Survival Data Using Random-effect Models......Page 272% h  m: i# E9 S8 {
Adjustment for Publication Bias and Quality Bias in Bayesian Meta-analysis......Page 2945 T& R8 {; `5 W, o  P
Meta-analysis of Clinical Trials: Opportunities and Limitations......Page 322# Z! v  ?$ U) b7 C5 W0 p
Research Synthesis for Public Health Policy: Experience of the Institute of Medicine......Page 3382 {( R3 P0 f' w/ ~+ g
Meta-analysis in Practice: A Critical Review of Available Software......Page 376
2 m+ L, N- t) t+ K' F, pIndex......Page 408' h# L  a1 k, Q5 @# i
% Q9 V/ N/ V+ D1 C2 L
Meta-Analysis in Medicine and Health Policy (2000).part1.rar (7 MB, 下载次数: 266)
$ s' H! }9 V9 v& v' h Meta-Analysis in Medicine and Health Policy (2000).part2.rar (6.38 MB, 下载次数: 255) 8 Y6 [/ P' ]7 P8 u6 [
) Y& N5 S( g8 b  u- {5 y0 }5 D
Meta-Analysis of Controlled Clinical Trials (Statistics in Practice)
3 }6 o, K2 t8 I& c ' I2 l+ e% k, a: k. I
Author(s): Anne Whitehead
" }: n' j。 B0 P; x, `7 f; m/ zPublisher: Wiley
( ?7 j7 b- M3 w" S  E5 D8 f& qYear: 2002       
) ^$ J0 ]9 X: y* G/ lEdition: 1" g+ [% G5 p( C1 u$ G
Language: English       
5 Y7 m6 k& ]: b7 o2 U; K: \) ZPages: 352
7 T/ e* ^" G: V% _6 z& \( s. c( d/ g
Table of Contents
. v- p5 }4 `* {# d* r7 q. L3 P
Introduction
( Y9 D0 |) C, z/ xProtocol development
5 S# k& F6 U2 ]# ~  cEstimating the treatment difference in an individual trial
, D: O8 @3 L3 }。 L。 }7 M% yCombining estimates of a treatment difference across trials) [; S5 T! x* ~( ?, D2 f
Meta-analysis using individual patient data
# H6 Z8 n- G- i2 a# @1 {Dealing with heterogeneity
7 y& M5 i  D2 f( c1 c* sPresentation and interpretation of results
' V% A2 N" Z9 ~1 j1 }; JSelection bias
, S' X+ B4 o& u- U% ~+ xDealing with non-standard datasets
, y& b  Z/ e7 u6 u& G$ ~Inclusion of trials with different study designs
# i! A2 X! H; }A Bayesian approach to meta-analysis2 y+ G, I" h' r( u, u& s/ n6 ?; j
Sequential methods for meta-analysis, w( R) O0 g4 Z7 O; W" P
Appendix Methods of estimation and hypothesis testing8 X8 g& b# R& ?) o" d+ d

& V' _6 I$ W# `8 h5 S Meta-Analysis of Controlled Clinical Trials (2002).pdf (1.79 MB, 下载次数: 255) 4 Q. b; l0 |& ^( r7 a* n1 g
% n3 ~' @1 h7 Y0 j- _" d
Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis
9 l$ B3 D% @  T
5 X* p* R  A- B- j( fAuthor(s)         Diana B. Petitti
* M5 c6 ^" n2 ~8 i' v/ h. E  P  WPublisher: Oxford University Press Inc       
( K: M  U6 c6 d  U  @. PYear: 2000       
7 ^' b7 e5 C8 I$ |Edition: 2
( C% m- w5 v; k+ ELanguage: English        ( V3 H! t! E" E* r% @
Pages: 306( U+ ~/ T. C- |' k) l8 {7 F
: U7 S7 N/ j+ i' s+ ^
Contents:

+ \8 y7 R( o$ q! J! r* \1. Introduction ; 1 ?; n6 `# S( s# F# q3 p6 }5 @
2. Overview of the Methods ; 6 K( D) i$ O' ]0 y9 z$ `
3. Planning the Study ;
2 @% O2 Y$ J8 ?" _/ T# x4. Information Retrieval ;
1 }% w8 b! O' r" w5. Data Collection ; 6 a+ [2 m7 L$ @3 y/ R
6. Advanced Issues in Meta-Analysis ; $ E! ?# [: k6 I) p6 H' ]
7. Statistical Methods in Meta-Analysis ;   r2 ^5 `8 a& I7 x
8. Other Statistical Issues in Meta-Analysis ; ; S$ P! X- @. w
9. Complex Decision Problems ;
( m( k+ w0 Y% I( \  `10. Estimating Probabilities ;
' {( T; F' |8 C! J4 W7 R11. Utility Analysis ;
' ]) [; {: ^! D) y* v12. Advanced Cost Effectiveness Analysis ; ) p* u, \: K8 B1 W+ _" }; q
13. Utility and Cost-Utility Analysis ; $ Y( g+ O( r" o. s
14. Exploring Heterogeneity ;
。 G% f; |; U6 V2 p。 P$ m2 f15. Sensitivity Analysis ;
- N9 g$ C/ |( s3 l: J1 {16. Reporting Results ; 5 G7 J" X6 h; h' z/ V9 a
17. Limitations
' `4 W; n) P0 z8 `3 m5 T/ f% v, C+ I; }' V2 Q: E5 V+ O
Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis (2000).part1.rar (7 MB, 下载次数: 188) / I! G9 H5 e7 {
Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis (2000).part2.rar (6.58 MB, 下载次数: 180)
- q! U9 E; H& P! }6 ~' [
* ~% Z$ j* H7 n' Z; v. sMeta-Analysis: An Updated Collection from the Stata Journal- p* ?+ b' b! _$ u

% Z5 M; X: x, q2 k! GAuthor(s): Jonathan Sterne
$ [; X% n% w! N& {Publisher:
+ \4 [" P' O! t+ J9 u" ^Year: 2009       
9 O! C; r, o, y, F+ q0 EEdition: 10 u$ R2 D. M9 ]5 l
Language: English , i+ `9 R2 _! U0 B/ K
Pages: 259$ F& ], {4 R: `/ }$ E8 P

' z0 z1 n3 n$ f4 v. T9 m) A' sThis collection provides detailed descriptions of both standard and advanced meta-analytic methods and their implementation in Stata. Readers will gain access to the statistical methods behind the rapid increase in the number of meta-analyses reported in the social science and medical literature. The book shows how to conduct and interpret meta-analyses as well as produce highly flexible graphical displays. Using meta-regression, it examines reasons for between-study variability in effect estimates. The book also employs advanced methods for the meta-analysis of diagnostic test accuracy studies, dose-response meta-analysis, meta-analysis with missing data, and multivariate meta-analysis./ K4 t- ?* v; Z7 h4 e; m- g4 _( a3 `

/ `1 g& }3 V# o& }& T Meta-Analysis An Updated Collection from the Stata Journal (2009).pdf (2.44 MB, 下载次数: 240)
' A' h6 F$ F" u' X, b& p, [) n, p2 I7 v( s8 r3 V
附:15本循证医学英文原版电子书(附PDF免费下载)
# F% _; k) b* S+ o, w) c# P  N: b( f" ?, d
来自群组: RGCE

本帖被以下淘专辑推荐:

2#
猫猫咪吖 发表于 2015-3-15 21:23:02 | 只看该作者
看不懂!
回复

使用道具 举报

3#
糊涂毛毛虫 发表于 2015-3-19 15:06:57 | 只看该作者
谢谢楼主!!!!非常棒的资料~!
回复

使用道具 举报

4#
zx08192004 发表于 2015-5-6 13:30:37 | 只看该作者
超级有用的资料,感谢楼主的分享,真得好好的学习学习。
回复

使用道具 举报

5#
txyw 发表于 2015-5-11 15:21:07 | 只看该作者
楼主牛逼,有没有关于网络meta的书啊
回复

使用道具 举报

6#
insect16 发表于 2015-6-26 11:25:52 | 只看该作者
感谢楼主无私分享
回复

使用道具 举报

7#
MLJ要奋斗 发表于 2015-7-2 10:16:30 | 只看该作者
回复

使用道具 举报

8#
 楼主| sampson2010 发表于 2015-7-2 15:29:39 | 只看该作者
txyw 发表于 2015-5-11 15:21
) ~0 ~$ k& B1 I/ x7 Z9 u楼主牛逼,有没有关于网络meta的书啊

. {( L6 o4 G8 n* t& m1 [* L最近忙于毕业,没时间整理,等闲下来了再发帖,记得关注哦!
回复

使用道具 举报

9#
fisher163 发表于 2015-8-14 20:13:31 | 只看该作者
可以点个赞
回复

使用道具 举报

10#
山脚下的小姑娘 发表于 2015-8-21 16:56:01 | 只看该作者
楼主太厉害了,非常感谢楼主的无私分享。向楼主学习。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

提现|充值|至尊会员||公卫人 ( )

GMT+8, 2019-9-17 07:09 , Processed in 0.192204 second(s), 34 queries , Gzip On.

Powered by X3.4

© 2001-2017

快速回复 返回顶部 返回列表
安徽快3 吉林快3走势 秒速时时彩平台 北京赛车高倍率平台 秒速时时彩官网 安徽快3 江苏快3 北京赛车时间表 秒速时时彩官网 秒速时时彩